1.If [math]x=\sqrt{3+\sqrt{3+\sqrt{3+……\infty}}}, [/math]then
1) x2-x+3=0
2) x2+x+3=0
3) x2-x-3=0
4) x2+x+3=0
2.If one root of the polynomial f(x)=5x2+3x+k is reciprocal of the other, then the value of “k” is
1) 0 2) 5 3) 1/6 4) 6
3.The product of the roots of [math]\sqrt3x^2-6x+9\sqrt3=0 [/math] is
1) [math] \sqrt3[/math]
2) 9
3) -3
4) 3
4.The discriminant of [math]\sqrt{x^2+x+1}=2\[/math] is
1) 13
2) -3
3) 11
4) 15
5.If 5 is a root of x2-(K-1)x+10=0 , then the value of “K” is
1) –8
2) 7
3) 8
4) 12
6.Which of the following is/are not quadratic equations?
1) (x2+1)(x2-1)=0
2) (x-2)2+1=x2+8
3) x(x+1)+8=(x+2)(x-2)
4) x2-55x+75=0
7.If α,β are the roots of x2+2x+5=0 then
1) α+β=-2
2) αβ=5
3) (α/β)+ (β/α)=(-6/5)
4) α+β=2
8.If 5x2-4x+3=1, then x=
1) 1 2) 3 3) 8 4) 7
9. If the roots of x2+kx+12=0 are in the ratio 1:3, then the value of ‘k’ is
1) 8 2) –7 3) 7 4) –8
10.If α and β are the roots of the equation ax2+bx+c=0 (a ≠ 0) then [math]\frac{1}{\alpha}+\frac{1}{\beta}=[/math]
1) [math]\frac{b}{c}[/math]
2) [math]\frac{-b}{c}[/math]
3) [math]\frac{b}{a}[/math]
4) [math]\frac{-b}{a}[/math]
11.If α and β are the roots of the equation ax2+bx+c=0 (a ≠ 0) then α2+β2=
1) [math]\frac{b^2-4ac}{a^2}[/math]
2) [math]\frac{b^2+4ac}{a^2}[/math]
3) [math]\frac{b^2-2ac}{a^2}[/math]
4) [math]\frac{b^2+2ac}{a^2}[/math]
12.If α and β are the roots of the equation ax2+bx+c=0 (a ≠ 0) then |α-β|=
1) [math]\frac{-\sqrt{{4ac-b}^2}}{a}[/math]
2) [math]\frac{\sqrt{{4ac-b}^2}}{\left|a\right|}[/math]
3) [math]\frac{\sqrt{b^2+4ac}}{\left|a\right|}[/math]
4) [math]\frac{\sqrt{b^2-4ac}}{\left|a\right|}[/math]