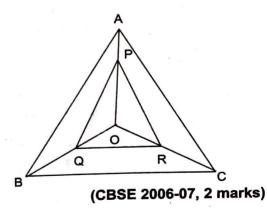
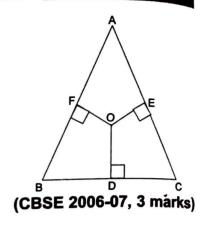

1. In figure, $\angle ACB = 90^{\circ}$, $CD \perp AB$. Prove that $CD^2 = BD \times AD$.

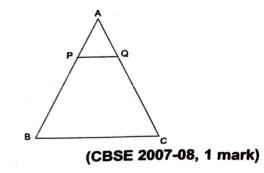

2. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, prove that the other two sides are divided in the same ratio. Using the above, prove the following:

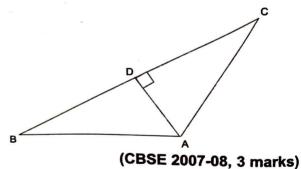
In figure, AB || DE and BC || EF. Prove that AC || DF.


(CBSE 2007-08, 6 marks)

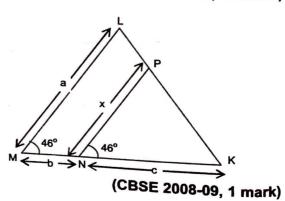
- Prove that the ratio of the areas of two similar triangles is equal to the ratio of the squares of their (CBSE 2005-06, 6 marks)
- Prove that the area of the equilateral triangle described on the side of a right angled isosceles triangle is half the area of the equilateral triangle described on its hypotenuse.
 (CBSE 2005-06, 6 marks)
- 5. In figure, PQ || AB and PR || AC. Prove that QR || BC.

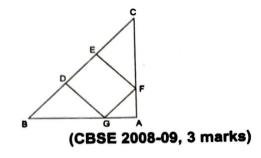
6. E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that \triangle ABE \sim \triangle CFB.

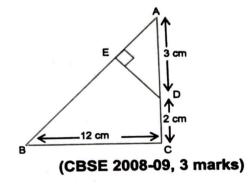

7. In figure O is any point in the interior of $\triangle ABC$, OD, OE and OF are drawn perpendicular to the sides BC, CA and AB respectively. Prove that $AF^2 + BD^2 + CE^2 = OA^2 + OB^2 + OC^2 - (OD^2 + OE^2 + OF^2)$


- State and prove Pythagoras theorem. Use the above to prove the following:

 ABC is an isosceles right triangle, right angled at C. Prove that $AB^2 = 2AC^2$ (CBSE 2006-07, 5 marks)
- 9. The lengths of the diagonals of a rhombus are 30 cm and 40 cm. Find the side of the rhombus. (CBSE 2007-08, 1 mark)
- 10. In figure, PQ || BC and AP: PB = 1:2.

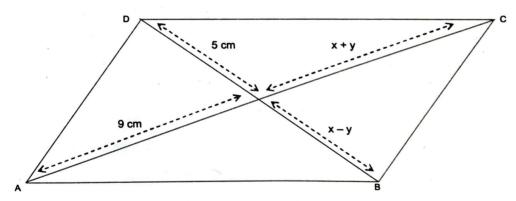

 Find $\frac{ar(\Delta APQ)}{ar(\Delta ABC)}$


11. In figure AD \perp BC . Prove that $AB^2 + CD^2 = BD^2 + AC^2$


12. In figure $\angle M = \angle N = 46^{\circ}$. Express x in terms of a, b and c where a, b, c are length of LM. MN and NK respectively.

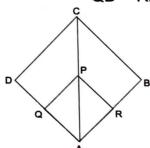
13. In figure DEFG is a square and $\angle BAC = 90^{\circ}$. Show that $DE^2 = BD \times EC$.

14. In figure $\triangle ABC$ is a right angled at C and DE \perp AB. Prove that $\triangle ABC \sim \triangle ADE$ and hence find the lengths of AE and DE.

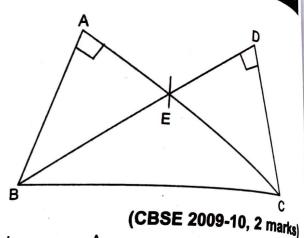

- 15. $\triangle ABC$ and $\triangle PQR$ are similar triangles such that $\angle A=32^\circ$ and $\angle R=65^\circ$ then $\angle B$ is (CBSE 2009-10, 1 mark)
 - (A) 83°

(B) 32°

(C) 65°

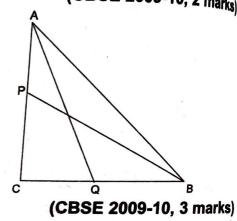

- (D) 97°
- 16. In figure, ABCD is a parallelogram. Find the value of x and y.

(CBSE 2009-10, 2 marks)

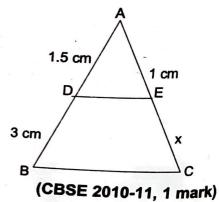


17. In figure, PQ || CD and PR || CB. Prove that $\frac{AQ}{QD} = \frac{AR}{RB}$.

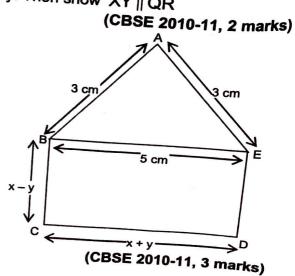
(CBSE 2009-10, 2 marks)



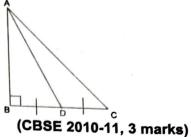
In figure, two triangles ABC and DBC are on the 18. same base BC in which $\angle A = \angle D = 90^{\circ}$. If CA and BD meet each other at E, show that $AE \times CE = BE \times DE$.


In figure, P and Q are the midpoints of the sides CA and 19. CB respectively of $\triangle ABC$ right angled at C.

Prove that
$$4(AQ^2 + BP^2) = 5AB^2$$


20. The diagonals of a trapezium ABCD with AB || DC intersect each other at point O. If AB = 2CD, find the ratio of the areas of triangle AOB and COD. (CBSE 2009-10, 3 marks)

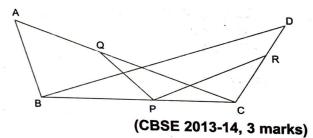
- 21. DE || BC then x equals to:
 - (A) 2.5 cm
 - (B) 2 cm
 - (C) 1.4 cm
 - (D) 4 cm



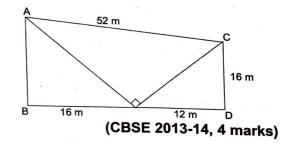
X and Y are points on the sides PQ and PR respectively of a Δ PQR . If the lengths of PX, QX, 22. PY and YR (in centimeters) are 4,4.5, 8 and 9 respectively. Then show XY || QR

In the figure below ABCDE is a pentagon with BE 23. parallel to CD and BC is parallel to DE. BC is perpendicular to CD. If the perimeter of ABCDE is 21 cm, find the value of x and y.

24. In figure, $\triangle ABC$ is right angled at B and D is the mid point of BC. Prove that $AC^2 = 4AD^2 - 3AB^2$



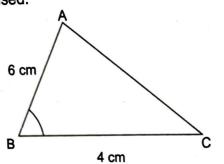
- 25. Prove that in a right triangle the square of the hypotenuse is equal to the sum of the squares of (CBSE 2010-11, 4 marks)
- 26. If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio. Prove it (CBSE 2010-11, 4 marks)
- 27. In $\triangle PQR$, E and F points on the sides PQ and PR respectively such that EF $\parallel QR$.

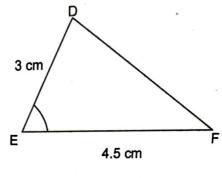

 If PE = 6 cm, QE = 2 cm and FR = 3 cm, then find PF. (CBSE 2013-14, 1 mark)
- 28. Find the side of a rhombus whose diagonal are of length 60 cm and 80 cm.

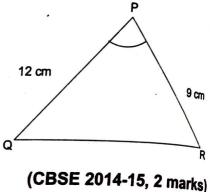
(CBSE 2013-14, 2 marks)

- 29. In $\triangle ABC$, perpendicular drawn from A intersects BC at D such that 3DB = CD. Prove that $2AB^2 = 2AC^2 BC^2$ (CBSE 2013-14, 3 marks)
- 30. In the figure, $\triangle ABC$ and $\triangle DBC$ have same base BC and lie on the same side. If PQ || BA and PR || BD, then prove that QR || AD.

In the given figure, AB and CD are two pillars P is a point on BD such that BP = 16 m and PD = 12 m. If CD = 16 m and AC = 52 m, then find AB and AP when it is given that \angle APC = 90°.

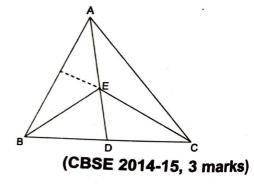


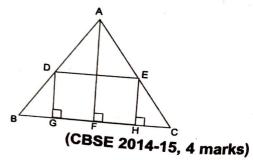

- 32. If $\triangle ABC \sim \triangle DEF$ and AX, DY are respectively the medians of $\triangle ABC$ and $\triangle DEF$. Then prove that
 - (A) ΔABC ~ ΔDEY
 - (B) ΔACX ~ ΔDFY


(C)
$$\frac{AX}{DY} = \frac{BC}{EF}$$

(CBSE 2013-14, 4 marks)

State which of the two triangles given in the figure are similar. Also state the similarity criterion 33. used.

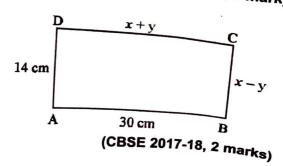




In a $\triangle ABC$, AD is perpendicular to BC and $AD^2 = BD \times CD$, Prove that ABC is a right angled 34. Triangle. (CBSE 2014-15, 3 marks)

 ΔABC and ΔEBC are in same base BC. If AE 35. produced intersects BC at D, then prove that $ar(\Delta ABC)$

In the given figure, ABC is a triangle and GHED is 36. a rectangle. BC = 12 cm. HE = 6cm, FC = BF and altitude AF = 24 cm. Find the area of the rectangle.

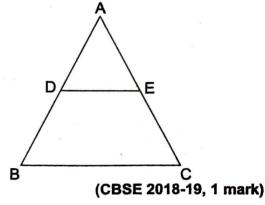

"In a triangle if square of one side is equal to the sum of the squares of the other two sides, then 37. the angle opposite the first side is a right angle'. Prove it. (CBSE 2014-15, 4 marks)

In ΔPQR, S and T are points in the sides PQ and PR respectively such that ST || QR. 38. (CBSE 2014-15, 1 mark)

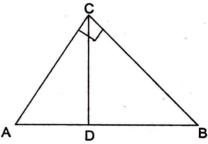
Given $\triangle ABC \sim \triangle PQR$, if $\frac{AB}{PQ} = \frac{1}{3}$, then find $\frac{ar \triangle ABC}{ar \triangle PQR}$. 39.

(CBSE 2017-18, 1 mark)

40. In figure, ABCD is a rectangle. Find the values of x and y.

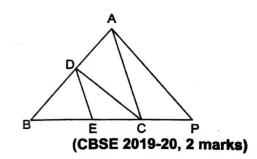


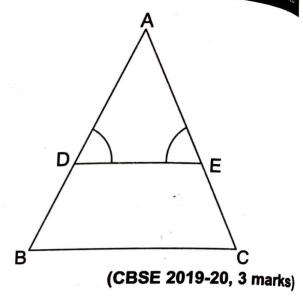
Prove that the area of an equilateral triangle described on one side of the square is equal to half 41. the area of the equilateral described on one of its diagonal.


If the area of two similar triangles are equal, prove that they are congruent.

(CBSE 2017-18, 3 marks)

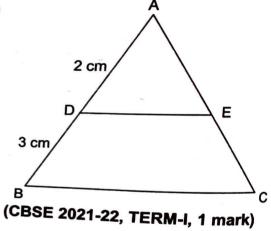
- Prove that, in a right triangle, the square on the hypotenuse is equal to the sum of the squares on 42. (CBSE 2017-18, 4 marks)
- In figure DE \parallel BC, AD = 1 cm and BD = 2 cm. 43. What is the ratio of the $ar(\Delta ABC)$ to the $ar(\Delta ADE)$?


In figure, $\angle ACB = 90^{\circ}$ and $CD \perp AB$, prove 44. that $CD^2 = BD \times AD$.

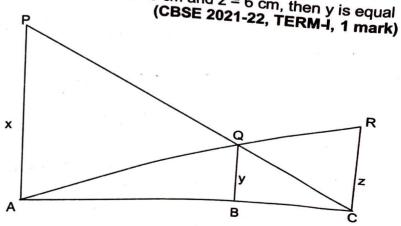

OR

If P and Q are the points on side CA and CB respectively of \triangle ABC, right angled at C, prove that $(AQ^2 + BP^2) = (AB^2 + PQ^2)$ (CBSE 2018-19, 3 marks)

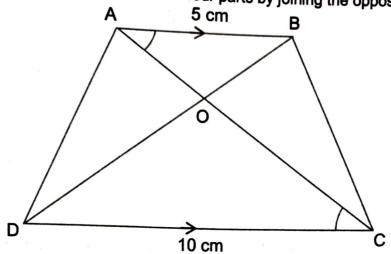
- Prove that in a right angle triangle, the square of the hypotenuse is equal the sum of squares of 45. (CBSE 2018-19, 4 marks) the other two sides.
- Given $\triangle ABC \sim \triangle PQR$, if $\frac{AB}{PQ} = \frac{1}{3}$, then $\frac{ar(\triangle ABC)}{ar(\triangle PQR)} = -\frac{1}{3}$ 46. (CBSE 2019-20, 1 mark)
- ABC is an equilateral triangle of side 2a, then length of one of its altitude is 47. (CBSE 2019-20, 1 mark)
- In figure , DE \parallel AC and DC \parallel AP . 48. Prove that $\frac{BE}{FC} = \frac{BC}{CP}$.



In figure, $\angle D = \angle E$ and $\frac{AD}{DB} = \frac{AE}{FC}$, 49. prove that BAC is an isosceles triangle.



- In a triangle, if square of one side is equal to the sum of the squares of the other two sides, then 50. (CBSE 2019-20, 3 marks) prove that the angle opposite to the first side is a right angle.
- In figure, DE \parallel BC, AD = 2cm and BD = 3 cm, then 51. $ar(\Delta ABC)$: $ar(\Delta ADE)$ is equal to:
 - (A) 4:25
 - (C)9:4


- (B) 2:3
- (D) 25:4

- In $\triangle ABC$ and $\triangle DEF$, $\angle F=\angle C$, $\angle B=\angle E$ and $AB=\frac{1}{2}DE$. Then, the two triangles are 52.
 - (A) Congruent, but not similar
 - (C) Neither congruent nor similar
- (CBSE 2021-22, TERM-I, 1 mark) (B) Similar, but not congruent
- (D) Congruent as well as similar
- In figure, PA, QB and RC are each perpendicular to AC. If x = 8 cm and z = 6 cm, then y is equal 53.
 - (A) $\frac{56}{7}$ cm
 - (B) $\frac{7}{56}$ cm
 - (C) $\frac{25}{7}$ cm
 - (D) $\frac{24}{7}$ cm

54-58. Case Study – II: A farmer has a field in the shape of trapezium, whose map with scale 1 cm = 20 m, is given below: The field is divided into four parts by joining the opposite vertices.

Based on the above information, answer any four of the following questions:

The two triangular regions AOB and COD are 54.

(CBSE 2021-22, TERM-I, 1 mark)

(A) Similar by AA criterion

(B) Similar by SAS criterion

(C) Similar by RHS criterion

- (D) Not similar
- 55. The ratio of the area of the $\triangle AOB$ to the area of $\triangle COD$, is (CBSE 2021-22, TERM-I, 1 mark)
 - (A) 4:1

(B) 1:4

(C) 1:2

- (D) 2:1
- If the ratio of the perimeter of $\triangle AOB$ to the perimeter of $\triangle COD$ would have been 1 : 4. 56. (CBSE 2021-22, TERM-I, 1 mark) then
 - (A) AB = 2 CD

(B) AB = 4 CD

(C) CD = 2 AB

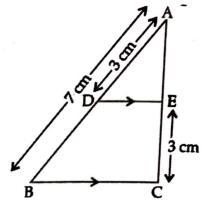
- (D) CD = 4 AB
- If in $\triangle AOD$ and BOC, $\frac{AO}{BC} = \frac{AD}{BO} = \frac{OD}{OC}$, then 57.

(CBSE 2021-22, TERM-I, 1 mark)

(A) ΔAOD ~ ΔBOC

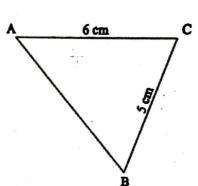
(B) $\triangle AOD \sim \triangle BCO$

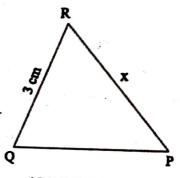
(C) \triangle ADO ~ \triangle BCO


- (D) \triangle ODA \sim \triangle OBC
- If the ratio of areas of two similar triangles AOB and COD is 1:4, then which of the following 58. (CBSE 2021-22, TERM-I, 1 mark) statements is true?
 - (A) The ratio of their perimeters is 3:4
 - (B) The corresponding altitudes have a ratio 1:2
 - (C) The medians have a ratio 1:4
 - (D) The angle bisectors have a ratio 1: 16
- If $\triangle PQR \sim \triangle ABC$; PQ = 6 cm, AB = 8 cm and the perimeter of $\triangle ABC$ is 36 cm, then the perimeter 59. (CBSE 2022-23, 1 mark)
 - of APQR is

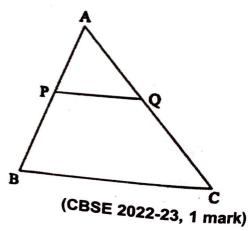
(B) 27 cm

(A) 20.25 cm

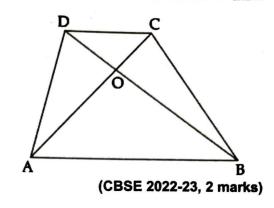

(C) 48 cm

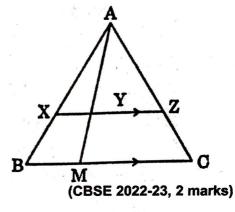

- 60. In the given figure, DE||BC. If AD = 3cm, AB = 7 cm and EC = 3 cm, then the length of AE is _____.
 - (A) 2 cm
 - (B) 2.25 cm
 - (C) 3.5 cm
 - (D) 4 cm

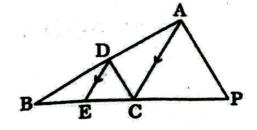
(CBSE 2022-23, 1 mark)


- 61. In the given figure,
 ΔABC~ΔQPR. If AC = 6 cm, BC
 = 5 cm, QR = 3 cm and PR = x;
 then the value of x is:
 - (A) 3.6 cm
 - (B) 2.5 cm
 - (C)10 cm
 - (D) 3.2 cm

(CBSE 2022-23, 1 mark)


- 62. In ΔABC, PQ || BC. If PB = 6 cm, AP = 4 cm, AQ = 8 cm, find the length of AC.
 - (A) 12 cm
 - (B) 20 cm
 - (C) 6 cm
 - (D) 14 cm

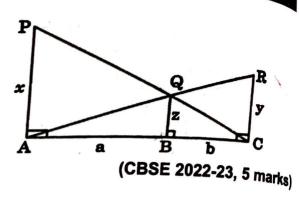

63. In the given figure, ABC is a triangle in which DE||BC. If AD = x, DB = x - 2, AE = x + 2 and EC = x - 1, then find the value of x.


64. Diagonals AC and BD of trapezium ABCD with AB||DC intersect each other at point O. Show that $\frac{OA}{OC} = \frac{OB}{OD}$.

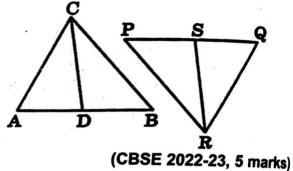
65. In the given figure, XZ is parallel to BC. AZ = 3 cm, ZC = 2cm, BM = 3 cm and MC = 5 cm. Find the length of XY.



66. In the given figure, DE||AC and $\frac{BE}{EC} = \frac{BC}{CP}$. Prove that DC||AP.

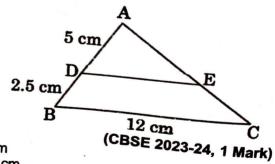

(CBSE 2022-23, 2 marks)

67. In the given figure, E is a point on the side CB produced of an isosceles triangle ABC with AB = AC. If AD \perp BC and EF \perp AC, them prove that \triangle ABD – \triangle ECF.



(CBSE 2022-23, 3 marks)

PA, QB and RC are each perpendicular to AC. If AP 68. = x, QB = z, RC = y, AB = a and BC = b, then prove that $\frac{1}{x} + \frac{1}{y} + \frac{1}{z}$.


- 69. In the given figure, CD and RS are respectively the medians of $\triangle ABC$ and $\triangle PQR$. If $\triangle ABC \sim \triangle PQR$. Then prove that:
 - (i) ΔADC ~ ΔPSR
 - (ii) $AD \times PR = AC \times PS$

- 70. D is a point on the side BC of a triangle ABC such that \angle ADC = \angle BAC, prove that CA² = CB × (CBSE 2022-23, 5 marks)
- If a line is drawn parallel to one side of a triangle to intersect the other two sides in 71. distinct points, then prove that the other two sides are divided in the same ratio.

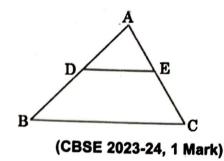
(CBSE 2022-23, 5 marks)

- If AD an PM are medians of triangles ABC and PQR, respectively where $\Delta ABC \sim \Delta PQR$, prove 72. that $\frac{AB}{PO} = \frac{AD}{PM}$. (CBSE 2022-23, 5 marks)
- In the given figure $\triangle ABC$ is shown. DE is parallel to 73. BC. If AD = 5 cm, DB = 2.5 cm and BC = 12 cm, then DE is equal to:

- (A) 10 cm
- (C) 8 cm

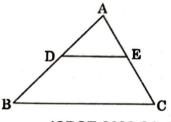
- (B) 6 cm
- (D) 7.5 cm
- The perimeters of two similar triangles ABC and PQR are 56 cm and 48 cm respectively. PQ/AB 74. (CBSE 2023-24, 1 Mark)

(C) $\frac{7}{6}$


- **75**. If the diagonals of a quadrilateral divide each other proportionally, then it is a:
 - (CBSE 2023-24, 1 Mark)

- (A) parallelogram
- (C) square

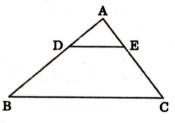
(B) rectangle (D) trapezium


- In \triangle ABC, DE || BC (As shown in the figure). If AD = 2 cm, BD 76. = 3 cm, BC = 7.5 cm, then the length of DE (in cm) is
 - (C)5

(B) 3 (D) 6

- In \triangle ABC, DE || BC (As shown in the figure). If AD = 4 cm, AB 77. = 9 cm, AC = 13.5 cm, then the length of EC is
 - (A) 6 cm
 - (C) 9 cm

- (B) 7.5 cm
- (D) 5.7 cm

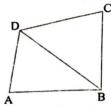

(CBSE 2023-24, 1 Mark)

- In the given figure, \triangle ABC, DE || BC. If AD = 2.4 cm, DB =- 4 78. cm and AE = 2 cm, then the length of AC is:
 - (A) $\frac{10}{3}$ cm

(B) $\frac{3}{10}$ cm

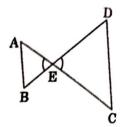
(C) $\frac{16}{3}$ cm

(D) 1.2 cm

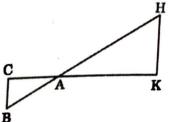

(CBSE 2023-24, 1 Mark)

Direction: In Q. No 79 is Assertion and Reason based questions carrying 1 mark each. Two statements are given, one labeled as Assertion (A) and the other is labeled as Reason (R). Select the correct answer to these questions from the codes (A). (B), (C) and (D) as given below: (CBSE 2023-24, 1 Mark)

- (A) Both, Assertion (A) and Reason (R) are true and Reason (R) is correct explanation of Assertion (A).
- (B) Both, Assertion (A) and Reason (R) are true and Reason (R) is not correct explanation of Assertion (A).
- (C) Assertion (A) is true but Reason (R) is false.
- (D) Assertion (A) is false but Reason (R) is true.
- ABCD is a trapezium with DC | AB. E and F are points on AD and BC 79. Assertion (A): respectively, such that EF || AB, Then $\frac{AE}{ED} = \frac{BF}{FC}$


Any line parallel to parallel sides of a trapezium divide the non-parallel sides Reason (R): proportionally.

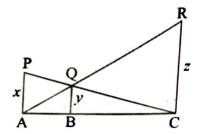
- In the given figure, ABCD is a quadrilateral. Diagonal BD 80. bisects ∠B and ∠D both: Prove that:
 - (i) ΔABD ~ ΔCBD
 - (ii) AB = BC


(CBSE 2023-24, 2 Marks)

In the given figure, $\frac{EA}{EC} = \frac{EB}{ED}$, prove that $\triangle EAB \sim \triangle ECD$ 81.

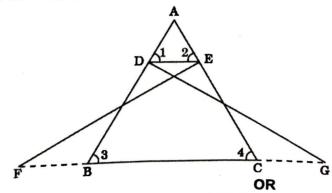
(CBSE 2023-24, 2 Marks)

In the given figure, $\triangle AHK \sim \triangle ABC$. If AK = 8 cm, BC = 3.2 82. cm and HK = 6.4 cm, then find the length of AC.



(CBSE 2023-24, 2 Marks)

(a) If a line drawn parallel to one side of a triangle to intersect the other two sides in distinct 83. points, then prove that the other two sides are divided in the same ratio. (CBSE 2023-24, 5 Marks)


OR

(b) In the given figure PA, QB and RC are each perpendicular to AC. If AP = x, BQ = y and CR = z. then prove that $\frac{1}{x} + \frac{1}{z} = \frac{1}{v}$.

(a) In the given figure, $\triangle FEC \cong \triangle GDB$ and $\angle 1 = \angle 2$. 84. Prove that $\triangle ADE \sim \triangle ABC$.

(CBSE 2023-24, 5 Marks)

- (b) Sides AB and AC and median AD of a ΔABC are respectively proportional to sides PQ and PR and median PM of another \triangle PQR. Show that \triangle ABC \sim \triangle PQR.
- (a) If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct If a line is drawn parallel to other two sides are divided in the same ratio. 85. OR

(CBSE 2023-24, 5 Marks) (b) Sides AB and AC and median AD to ΔABC are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that $\triangle ABC \sim \triangle PQR$.

86. State and prove Basic Proportionality theorem.

(CBSE 2023-24, 5 Marks)

87. (a) E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that ΔABE ~ ΔCFB.
 (CBSE 2023-24, 5 Marks)

OR

(b) Sides AB, BC and the median AD of \triangle ABC are respectively proportional to sides to sides PQ, QR and the median PM of another \triangle PQR prove that \triangle ABC \sim \triangle PQR.